
 

 

Abstract-This paper describes a new type of micro-powered 
electrode configuration. The circuit consists of an 
instrumentation amplifier and a special AC coupling 
configuration that maintains a high CMRR with a gain of a 
1000. All electronics, including two lithium batteries, are 
mounted on a flexible circuit board (FPC). The single FPC has a 
special shape that allows differential recording at various 
distances between the electrodes. The whole circuit is typically 
popped onto EMG electrodes so that it can be re-used many 
times. 
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I. INTRODUCTION 

 
The objective of this project was to design and implement a 
single and compact unit containing all the electronics 
required for surface EMG and in particular skeletal muscle 
signal pre-amplification. A sufficiently high gain had to be 
used without causing saturation. By using a high gain right 
next to the recording electrodes, it is likely that a much higher 
SNR would be achieved in most cases. The unit had to be 
powered by batteries while providing a relatively long 
operational life. Battery powered systems offer both very low 
noise on the power rails as well as providing isolation. 
Although the PSRR of the amplifier can reject noise from 
power rails, bringing power to the remote unit through 
relatively long wires would have noise at various frequencies 
that would likely not be fully attenuated by the PSRR and 
hence causing alias errors. The unit has also to be re-usable 
after each experiment. A high CMRR had to be achieved 
while providing slow baseline drift removal capability. The 
applications require a recording bandwidth up to 100 Hz at a 
minimum gain of 60 dB with an expected maximum signal 
amplitude up to +1 mV. 
 

II. DESCRIPTION 
A. Architecture 
 

The general architecture of the active electrode 
configuration is shown in Fig. 1. The circuit, implemented on 
a single Kapton Flexible Printed Circuit (FPC), has two main 
sections of size 33.75 mm × 21.78 mm (1.3285 × 0.8575 
inch) linked through a narrow bridge. One section contains all 
the electronics whereas the second section is used to hold two 
rechargeable lithium batteries. Both sections have an 
embedded female snapper as shown in the photograph that 
connects directly to a pair of conventional surface electrodes 
by inserting the female onto the male snappers. The 
configuration allows two differential electrodes to be placed 
on the skin apart to a chosen distance up to 101.6 mm. (4 
inches). For shorter distances, the narrow bridge connecting 
the two sections simply bends upward. 

 

B. Amplifier 
 

One of the most critical issues was to select the best 
amplifier for this particular unit. The AD627 [1] has been 
selected for several reasons. The AD627 is a micro-power 
instrumentation amplifier, which makes it ideal for 
differential recordings while consuming low power. In dual 
supply mode, the power rails Vs can be as low as ±1.1 Volt, 
which is ideal for battery-powered applications. With a 
maximum quiescent current of 85 µA (60 µA typical), the 
unit can operate continuously for several hundred hours 
before requiring battery replacement. 

 
C. Batteries 
 

Although 1.5 V batteries such as Zinc-Air batteries or 
even 1.2 V nickel cadmium or nickel-metal hydrite (NiMH) 
batteries could have been used, 3.0 V batteries such as 
lithium cells have been chosen. With a gain of 60 dB and a 
maximum negative and positive output swing of -Vs + 25 mV 
and +Vs - 70 mV (RL = 20 kΩ) respectively. The positive 
input amplitude would in the best case be limited to 1.5 mV 
and 3.0 mV with 1.5 Volt and 3.0 Volts batteries respectively. 
To be capable of recording signals up to +1 mV, 3 Volt 
batteries were essential to provide sufficient margin 
respective to the inputs to deal with various artifacts such as 
offsets and temperature drifts as described later. The positive 
peak input voltage is specified with respect to the amplifier's 
reference. In the present implementation, the amplifier's 
reference is simply connected to the analog ground. The main 
advantage is a simple implementation without additional 
power consumption and a low impedance connection, which 
maintains the high CMRR. This configuration is optimal if 
both the positive and negative portions of the bio-signal are 
relatively the same, otherwise the amplifier's reference could 
be changed. Generating a virtual ground to be connected to 
the amplifier's reference could have been easily implemented 
through a voltage divider using two resistors with high values 
and the right ratio linking the 3V with the analog ground with 
the reference connected between the two resistors. By using 
resistors with high values, the power consumption could have 
been maintained relatively low but this configuration would 
increase substantially the impedance at the amplifier's 
reference and therefore, decrease substantially the CMRR 
which is critical in differential recording. To generate a 
virtual ground while providing low impedance at the 
amplifier's reference, an additional amplifier must be used. 
This configuration was not chosen because of the additional 
quiescent current required which imposed some serious 
restriction on the physical size of the battery that could be 
used. The standard discharge of the lithium coins with a size 
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sufficiently small for our particular implementation is as low 
as 100 µA. With a 25 µA margin from the maximum 
quiescent current of the AD627, an additional amplifier 
would, in the best case, require a standard discharge of 200 
µA. 

This means that the diameter of the lithium cells would 
extend for instance from 10.0 mm (CR1025) to a minimum of 
20.0 mm (CR2016) in diameter. The discharge current could 
be increased to the maximum continuous discharge of 0.5 mA 
for the CR1025 but the voltage at the output of the battery 
would drop accordingly. Although the voltage at the power 
rails can drop as low as 1.1V for the AD625, it would reduce 
the maximum output swing being already under tight 
restrictions. The same reasoning applies when recording 
bipolar signals with a single lithium cell. In such a case, a 
virtual ground must be generated, increasing the drain at the 
battery's output while reducing the output swing amplitude of 
the amplifier. 

Lithium cells have been selected because of their long 
shelf life, their light weight, and high energy density relative 
to older primary cells. There are two main lithium products 
readily available commercially, namely, the carbon 
monofluoride coin and the manganese dioxide coin 
represented with part numbers starting with the standard 
prefixes BR and CR respectively. 

Both types have relatively stable flat discharge voltage. 
Since conductive carbon is continuously formed during 
discharge, the internal impedance of the battery does not 
increase until the end of the discharge. The lithium 
manganese dioxide (CR-type) is very popular because of its 
lower cost and wide range of availability compared with the 
lithium carbon monofluoride (BR-type). Although both types 
can be used with the present system, the CR-type unlike the 
BR-type, because of the MnO2 content, the operating voltage 
drops slightly over time because of the rise in internal 
impedance. 

The unit has two battery cell holders that typically accept 
CR1025 lithium batteries. The two 10 mm diameter CR1025 
batteries with a weigh of 0.7 gram each have a capacity of 30 
mAH per battery, which can provide an operational life of 
approximately 700 hours minimum and 1000 hours typical of 
continuous operation between recharges. 
 
D. Filtering 
 

The unit has a 20 dB/dec. bootstrap AC-coupling [2] with 
a 3-dB cut-off frequency set at 0.5 Hz for baseline drift 
removal and low-pass filtering above 100 Hz with 
approximately  -20 dB/dec. of attenuation. The high-pass 
filtering does not require additional components since it is 
achieved by the limits of the gain versus frequency 
characteristics of the instrumentation amplifier alone. The 
amplifier has been selected such that with a gain of 60 dB, a 
flat response could be observed up to a maximum of 100 Hz 
with gain attenuation above 100 Hz. Although additional 
components can be avoided, which is critical in small 
implementation, the cut-off frequency becomes highly 
dependent upon the gain value of the unit. For instance, 

decreasing the gain to 40 dB would increase the cut-off 
frequency to approximately 300 Hz in our particular case. 
Nonetheless, the present implementation provides a perfect 
match between both the recording bandwidth and a required 
gain of 60 dB. 

The bootstrap AC-coupling requires twice the number of 
components compared with a typical AC-coupling 
configuration. But unlike conventional AC-coupling, it 
maintains a much higher CMRR so critical in differential 
measurements. 
 
E. Managing Error Artifacts 
 

It is extremely difficult, even with large surface electrodes 
and very good skin preparation, to provide skin-electrode 
impedance below 5 K-ohms. In the best case, input 
impedance of at least 500 K-ohms is required to maintain the 
loading error below 1%. Assuming that the skin-electrode 
impedance may vary between 5 K- and 10 K-ohms, 1 M-ohm 
input impedance would maintain loading errors below the 
acceptable thresholds between 0.5% and 1%. 

Unfortunately, the AD627 has a maximum bias current of 
10 nA (2 pA typical) and 15 nA over temperature (10 nA 
typical) with a typical average temperature coefficient of 20 
pA/oC.  Because of the AC-coupling, the bias current at each 
amplifier's input flows through a return path consisting of two 
resistors of 499 K-ohms each in series in the bootstrap circuit 
connecting to the analog ground. Over the temperature range, 
a maximum input offset created by the bias return path can be 
as high as 15 mV. Although this would be a problem in 
single-ended recording, in our particular implementation, this 
large offset would appear at both inputs and ideally be 
cancelled by the CMRR. Unfortunately, mismatches between 
the channels prevent a complete cancellation of the bias 
offset. 

 
Fig. 1. Photograph of the Actrode unit. 

 
The AD627 has a maximum input offset current of 1 nA 

(0.3 nA typical) and 5 nA over temperature with a typical 
average temperature coefficient of 5 pA/oC. This alone 
creates a worst case input offset at room temperature of 1 
mV, which translates onto 1 V at the output. Considering also 
both the input and output offsets of the amplifier, the 
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resulting output offset can reach at room temperature a value 
of approximately 1.2 Volts. With a bio-signal of positive 
amplitude of 1 mV, we still have approximately 800 mV left 
at the output (800 µV at the input) prior to saturation. This 
result translates into approximately 80 kΩ of impedance 
mismatches at the inputs which should be easily achieved 
with resistors with a 1% tolerance and a maximum 
impedance mismatch between electrodes of 5 KΩ. 
 

III. SUMMARY 
 

A new low-power electrode unit with mechanical 
flexibility has been briefly described. The system, although 
designed for EMG, can also be adapted to other 
electrophysiological recording applications such as EOG. 
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